Structure Learning of Probabilistic Relational Models from Incomplete Relational Data
نویسندگان
چکیده
Existing relational learning approaches usually work on complete relational data, but real-world data are often incomplete. This paper proposes the MGDA approach to learn structures of probabilistic relational model (PRM) from incomplete relational data. The missing values are filled in randomly at first, and a maximum likelihood tree (MLT) is generated from the complete data sample. Then, Gibbs sampling is combined with MLT to modify the data and regulate MLT iteratively for obtaining a well-completed data set. Finally, probabilistic structure is learned through dependency analysis from the completed data set. Experiments show that the MGDA approach can learn good structures from incomplete relational data.
منابع مشابه
Metadata Enrichment for Automatic Data Entry Based on Relational Data Models
The idea of automatic generation of data entry forms based on data relational models is a common and known idea that has been discussed day by day more than before according to the popularity of agile methods in software development accompanying development of programming tools. One of the requirements of the automation methods, whether in commercial products or the relevant research projects, ...
متن کاملLearning Probabilistic Models of Relational Structure
Most real-world data is stored in relational form. In contrast, most statistical learning methods work with “flat” data representations, forcing us to convert our data into a form that loses much of the relational structure. The recently introduced framework of probabilistic relational models (PRMs) allows us to represent probabilistic models over multiple entities that utilize the relations be...
متن کاملMulti-Relational Data Mining using Probabilistic Models Research Summary
We are often faced with the challenge of mining data represented in relational form. Unfortunately, most statistical learning methods work only with “flat” data representations. Thus, to apply these methods, we are forced to convert the data into a flat form, thereby not only losing its compact representation and structure but also potentially introducing statistical skew. These drawbacks sever...
متن کاملAn Exact Approach to Learning Probabilistic Relational Model
Probabilistic Graphical Models (PGMs) offer a popular framework including a variety of statistical formalisms, such as Bayesian networks (BNs). These latter are able to depict real-world situations with high degree of uncertainty. Due to their power and flexibility, several extensions were proposed, ensuring thereby the suitability of their use. Probabilistic Relational Models (PRMs) extend BNs...
متن کاملLearning directed probabilistic logical models from relational data
Data that has a complex relational structure and in which observations are noisy or partially missing poses several challenges to traditional machine learning algorithms. One solution to this problem is the use of socalled probabilistic logical models (models that combine elements of first-order logic with probabilities) and corresponding learning algorithms. In this thesis we focus on directed...
متن کامل